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Graph world is diverse

Different domains:
• Information
• Social
• Biological
• Transportation
• …
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Graph world is diverse

Different graph types:
• (Un)directed
• (Un)weighted
• Temporal
• Heterogeneous
• …
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Graph world is diverse

Different modalities:
• Nodes
• Edges
• Motifs
• Subgraphs
• Whole graphs
• …
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Graph world is diverse

Different tasks:
• Classification
• Clustering
• Anomaly detection
• …
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Graph world is diverse
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Why representations?
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We have fast & good algorithms for mining vector data…

low-dimensional representation

k-means

Clustering



Why representations?

10

We have fast & good algorithms for mining vector data…

low-dimensional representation

Log. regression

Classification



2009
SocioDim

A brief history of node embeddings
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Algorithm
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1-sentence summary of the contribution

Paper title. Authors, CONFERENCE YEAR

Overview and inner workings of the algorithm



Neural node embeddings



Anatomy of a neural embedding
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Nodes in random walks ≈ words in sentences → use word2vec

Random walks[2,3,4]

Self-supervised neural network[1]

𝐖 𝐖!

representation

[1] Efficient Estimation of Word Representations in Vector Space. Mikolov et al., NIPS 2013
[2] DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014
[3] node2vec: Scalable Feature Learning for Networks. Grover & Leskovec, KDD 2016
[4] VERSE: Versatile Graph Embeddings from Similarity Measures. Tsitsulin et al., WWW 2018



DeepWalk: algorithm overview
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“Nodes in random walks ≈ words in sentences → use word2vec”

Predictions with hierarchical softmax

𝐖 𝐖′!

two representations

DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014

use pairs within window size 𝑤

Start 𝛾 random walks of length 𝑡 from each node 



DeepWalk: asymptotics and practice
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In practice, 𝛾 = 80, 𝑡 = 80, 𝑤 = 10, meaning 80 ∗ 80 ∗ 𝑛 of “text”

NB: never change 𝑤

If you lower 𝑤, increase 𝛾 and 𝑡

Parameter meaning is not trivial :(

DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014



DeepWalk: asymptotics and practice
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Python implementation generates all walks and calls word2vec

I wrote a C++ implementation that does not store extra walks

Optimization is still O(d ∗ log 𝑛) at each step :(

Practical limitations: ~3M nodes

DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014

https://github.com/phanein/deepwalk
https://github.com/xgfs/deepwalk-c


LINE: algorithm overview
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“Why use random walks when edges do the trick”

Predictions with negative sampling

𝐖 𝐖′!

two representations

LINE: Large-scale information network embedding. Tang et al., WWW 2015



LINE: algorithm overview
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“Why use random walks when edges do the trick”

Predictions with negative sampling

𝐖 𝐖′!

two representations

LINE: Large-scale information network embedding. Tang et al., WWW 2015

Random edges



LINE: asymptotics and practice
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Simple & fast algorithm, not great on downstream tasks :(

NB: Set the total # of samples T proportional to # of edges

Optimization is 𝑂 𝑑𝑛 :)

Authors’ C++ implementation works well

Practical limitations: ~10M nodes

LINE: Large-scale information network embedding. Tang et al., WWW 2015

https://github.com/tangjianpku/LINE


Node2vec: algorithm overview
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“Let’s add two more parameters (p, q) to DeepWalk”

Predictions with negative sampling

𝐖 𝐖′!

two representations

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016

use pairs within window size 𝑤

Start 𝛾 random walks of length 𝑡 from each node 



Node2vec: algorithm overview
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“Let’s add two more parameters (p, q) to DeepWalk”

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016

𝑢

𝑣1
)1 𝑞

)1 𝑞)1 𝑝

)1 𝑝 , 1, )1 𝑞 , )1 𝑞

Predictions with negative sampling

𝐖 𝐖′!

two representations

Use second-order random walk sampling
𝑢 𝑣



Node2vec: myth 1
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Myth: parameters (p, q) are related to BFS and DFS

Reality: parameters (p, q) are related to triangles ≈ clusters

Low q → explore intra-cluster information

High q → explore inter-cluster information 

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016



Node2vec: myth 2
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Myth: node2vec is a scalable algorithm

Reality: second-order random walks are worst-case 𝑂 𝑛!

Worst case is a star graph
(or any graph with very high-degree nodes)

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016



Node2vec: asymptotics and practice
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NB: comparisons in the paper are misleading (𝛾 = 10 for all methods)

In the paper, 𝛾 = 10, 𝑡 = 80, 𝑤 = 10, hyperparameter search for (p, q)

Setting 𝛾 = 10 gives worse results, please use 𝛾 = 80

Tuning (p, q) is not beneficial on most graphs

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016



Node2vec: asymptotics and practice
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Python implementation generates all walks and calls word2vec

I wrote a C++ implementation that does not store extra walks

Preprocessing can be 𝑂 𝑛! :(

Optimization is 𝑂 𝑑 :) 

Practical limitations: ~500k nodes if you are lucky, if not, ~50k

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016

https://github.com/aditya-grover/node2vec
https://github.com/xgfs/node2vec-c


VERSE: algorithm overview
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“Random walks define a similarity distribution”

Predictions with negative sampling

𝐖 𝐖!

shared representation

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018



VERSE: algorithm overview
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“Random walks define a similarity distribution”

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018

𝑠𝑖𝑚(𝑢,⋅) 𝑠𝑖𝑚(𝑣,⋅)

𝑢 𝑣

𝑢

𝑣

Predictions with negative sampling

𝐖 𝐖!

shared representation

Sample nodes from similarity distributions



VERSE: algorithm overview
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“Random walks define a similarity distribution”

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018

𝑢

𝑣

Predictions with negative sampling

𝐖 𝐖!

shared representation

𝑢

𝑣

Full similarity matrix M is never materialized

Sample nodes from similarity distributions



VERSE: interpretation of DeepWalk
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DeepWalk random walks ~= Personalized PageRank

PPR parameter α = "#!
"$%

for DeepWalk’s 𝑤

We can now measure the quality of embedding directly :)

1 parameter instead of 3 or 5

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018



VERSE: asymptotics and practice
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Simple & fast algorithm, good on symmetric link prediction :)

NB: if edges’ information is asymmetric, try using two matrices 𝐖,𝐖′𝐓

Optimization is 𝑂 𝑑 :)

Authors’ C++ implementation works well

Practical limitations: ~10M nodes

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018

https://github.com/xgfs/verse


Factorization embeddings



Anatomy of a factorization embedding
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Construct a similarity matrix → do SVD

[1] Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016
[2] Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018
[3] Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. Qiu et al., WSDM 2018

U Σ V!



HOPE: algorithm overview
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Do SVD on an implicit similarity matrix with sparse updates

U Σ V!

Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016



HOPE: algorithm overview
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Do SVD on an implicit similarity matrix with sparse updates

Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016

JDGSVD decomposes dense similarity matrices of the form M"
#$M%

PPR / Katz similarity 



HOPE: asymptotics and practice
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Does not work well for classification/link prediction :(

Horrible MATLAB code :(

Overall complexity is ~ O(d ∗m ∗ L) :)

Practical limitations: ~5M nodes + MATLAB license

Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016



AROPE: algorithm overview
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Do eigen decomposition on the adjacency matrix, scale the λ’s

Q Λ Q!

Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018

Idea: f A ≈ Qf Λ Q!, works with Katz similarity



AROPE: asymptotics and practice
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Does not work well for classification/link prediction :(

Easy to implement :)

Overall complexity is ~ O(d ∗m + d!n) :)

Actual speed depends on the eigensolver

Practical limitations: ~5M nodes

Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018



NetMF: algorithm overview
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Let’s decompose DeepWalk’s similarity matrix

Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. Qiu et al., WSDM 2018

U Σ V!
DeepWalk’s M ≈ log(∑&'$$( D#$A)



NetMF: asymptotics and practice
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Matrix M is dense, limiting scalability

A bridge between factorization and neural methods

Overall complexity is ~ O(n') ٩(ఠ益ఠ)۶

Practical limitations: ~10k nodes

Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018



Sketch-based embeddings



Anatomy of a sketch-based embedding
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Iteratively approximate a higher-order embedding

[1] Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018
[2] Fast and Accurate Network Embeddings via Very Sparse Random Projection. Chen et al., CIKM 2018
[3] NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching. Yang et al., KDD 2019

U Σ



RandNE: algorithm overview
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Approximate high-order M by iterative random projections

Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018

U

1. Start with U( = QR(𝒩(0, $
)
))

2. Iteratively set U& = A ∗ U&#$

3. Final embedding is a weighted sum U = 𝛼(U( + 𝛼$𝑈$ +⋯



RandNE: asymptotics and practice
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NB: For decent downstream performance need to tune α(

Typically, we only need 3 multiplications (i = 3)

Overall complexity is ~ O(m + d!n) :)

Python and MATLAB code available

Practical limitations: ~1B nodes (need to store all U’s) 

Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018

https://github.com/ZW-ZHANG/RandNE


FastRP: algorithm overview
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Approximate high-order M by iterative random projections

Fast and Accurate Network Embeddings via Very Sparse Random Projection. Chen et al., CIKM 2018

U

1. Start with U( =
3 𝑤. 𝑝. ⁄$ *
0 𝑤. 𝑝. ⁄$ +

− 3 𝑤. 𝑝. ⁄$ *

2. Iteratively set U& = A ∗ L ∗ U&#$, L ≈ degree normalization

3. Final embedding is a weighted sum U = 𝛼(U( + 𝛼$𝑈$ +⋯



FastRP: asymptotics and practice
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NB: For good downstream performance need to tune α(, 𝛽

Typically, we only need 4 multiplications (i = 4)

Overall complexity is ~ O(m) :)

Python code available

Practical limitations: ~1B nodes (need to store all U’s) 

Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018

https://github.com/GTmac/FastRP


NodeSketch: algorithm overview
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Approximate high-order M by iterative sketching

NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching. Yang et al., KDD 2019

U

1. Start with U( =sketch(A+I)

2. Iteratively sketch U& = sketch(α ∗ A ∗ U&#$)

3. Final embedding is simply U,



FastRP: asymptotics and practice
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NB: For good downstream performance need to tune α

Typically, we only need 5 hashes k = 5

Overall complexity is ~ O(mk) :)

Python / C++ code available

Practical limitations: ~1B nodes (need to tune α)

NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching. Yang et al., KDD 2019

https://github.com/eXascaleInfolab/NodeSketch


Choosing the right algorithm

49

N<10k NetMF
Yes

N<1M

N
o

N
o

DeepWalk*, 
VERSE

RandNE, 
FastRP, 

NodeSketch

Yes

Start



Edge embeddings
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NB: choose operator depending on the algorithm



Questions?

twitter twitter.com/tsitsulin_
website tsitsul.in/talks/ods ← presentation
write me anton@tsitsul.in


