
An opinionated guide
to node embeddings

Anton Tsitsulin
Ph.D. student @ University of Bonn

Student Researcher @ Google



Graph world is diverse

Different domains:
• Information
• Social
• Biological
• Transportation
• …

2



Graph world is diverse

Different graph types:
• (Un)directed
• (Un)weighted
• Temporal
• Heterogeneous
• …

3



Graph world is diverse

Different modalities:
• Nodes
• Edges
• Motifs
• Subgraphs
• Whole graphs
• …

4



Graph world is diverse

Different tasks:
• Classification
• Clustering
• Anomaly detection
• …

5



Graph world is diverse

6

Domains

Information
Social
Biological
Transportation

Graph Types

(Un)directed
(Un)weighted
Temporal
Heterogeneous

Modalities

Nodes
Edges
Subgraphs
Whole graphs

Tasks

Classification
Clustering
Anomaly 
detection



Graph world is diverse

7

Domains

Information
Social
Biological
Transportation

Graph Types

(Un)directed
(Un)weighted
Temporal
Heterogeneous

Modalities

Nodes
Edges
Subgraphs
Whole graphs

Tasks

Classification
Clustering
Anomaly 
detection

↓

Embeddings



Graph world is diverse

8

Domains

Information
Social
Biological
Transportation

Graph Types

(Un)directed
(Un)weighted
Temporal
Heterogeneous

Modalities

Nodes
Edges
Subgraphs
Whole graphs

Tasks

Classification
Clustering
Anomaly 
detection

↓

Embeddings



Why representations?

9

We have fast & good algorithms for mining vector data…

low-dimensional representation

k-means

Clustering



Why representations?

10

We have fast & good algorithms for mining vector data…

low-dimensional representation

Log. regression

Classification



2009
SocioDim

A brief history of node embeddings

11

2014
DeepWalk

LINE 
2015

2016
node2vec

VERSE 

2018

2018
RandNE

FastRP

2019

2019

NodeSketch

neural wave Factorization + sketching wave

HOPE 
2016

2018
AROPE

NetMF
2018



Algorithm

12

1-sentence summary of the contribution

Paper title. Authors, CONFERENCE YEAR

Overview and inner workings of the algorithm



Neural node embeddings



Anatomy of a neural embedding

14

Nodes in random walks ≈ words in sentences → use word2vec

Random walks[2,3,4]

Self-supervised neural network[1]

𝐖 𝐖!

representation

[1] Efficient Estimation of Word Representations in Vector Space. Mikolov et al., NIPS 2013
[2] DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014
[3] node2vec: Scalable Feature Learning for Networks. Grover & Leskovec, KDD 2016
[4] VERSE: Versatile Graph Embeddings from Similarity Measures. Tsitsulin et al., WWW 2018



DeepWalk: algorithm overview

15

“Nodes in random walks ≈ words in sentences → use word2vec”

Predictions with hierarchical softmax

𝐖 𝐖′!

two representations

DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014

use pairs within window size 𝑤

Start 𝛾 random walks of length 𝑡 from each node 



DeepWalk: asymptotics and practice

16

In practice, 𝛾 = 80, 𝑡 = 80, 𝑤 = 10, meaning 80 ∗ 80 ∗ 𝑛 of “text”

NB: never change 𝑤

If you lower 𝑤, increase 𝛾 and 𝑡

Parameter meaning is not trivial :(

DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014



DeepWalk: asymptotics and practice

17

Python implementation generates all walks and calls word2vec

I wrote a C++ implementation that does not store extra walks

Optimization is still O(d ∗ log 𝑛) at each step :(

Practical limitations: ~3M nodes

DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014

https://github.com/phanein/deepwalk
https://github.com/xgfs/deepwalk-c


LINE: algorithm overview

18

“Why use random walks when edges do the trick”

Predictions with negative sampling

𝐖 𝐖′!

two representations

LINE: Large-scale information network embedding. Tang et al., WWW 2015



LINE: algorithm overview

19

“Why use random walks when edges do the trick”

Predictions with negative sampling

𝐖 𝐖′!

two representations

LINE: Large-scale information network embedding. Tang et al., WWW 2015

Random edges



LINE: asymptotics and practice

20

Simple & fast algorithm, not great on downstream tasks :(

NB: Set the total # of samples T proportional to # of edges

Optimization is 𝑂 𝑑𝑛 :)

Authors’ C++ implementation works well

Practical limitations: ~10M nodes

LINE: Large-scale information network embedding. Tang et al., WWW 2015

https://github.com/tangjianpku/LINE


Node2vec: algorithm overview

21

“Let’s add two more parameters (p, q) to DeepWalk”

Predictions with negative sampling

𝐖 𝐖′!

two representations

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016

use pairs within window size 𝑤

Start 𝛾 random walks of length 𝑡 from each node 



Node2vec: algorithm overview

22

“Let’s add two more parameters (p, q) to DeepWalk”

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016

𝑢

𝑣1
)1 𝑞

)1 𝑞)1 𝑝

)1 𝑝 , 1, )1 𝑞 , )1 𝑞

Predictions with negative sampling

𝐖 𝐖′!

two representations

Use second-order random walk sampling
𝑢 𝑣



Node2vec: myth 1

23

Myth: parameters (p, q) are related to BFS and DFS

Reality: parameters (p, q) are related to triangles ≈ clusters

Low q → explore intra-cluster information

High q → explore inter-cluster information 

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016



Node2vec: myth 2

24

Myth: node2vec is a scalable algorithm

Reality: second-order random walks are worst-case 𝑂 𝑛!

Worst case is a star graph
(or any graph with very high-degree nodes)

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016



Node2vec: asymptotics and practice

25

NB: comparisons in the paper are misleading (𝛾 = 10 for all methods)

In the paper, 𝛾 = 10, 𝑡 = 80, 𝑤 = 10, hyperparameter search for (p, q)

Setting 𝛾 = 10 gives worse results, please use 𝛾 = 80

Tuning (p, q) is not beneficial on most graphs

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016



Node2vec: asymptotics and practice

26

Python implementation generates all walks and calls word2vec

I wrote a C++ implementation that does not store extra walks

Preprocessing can be 𝑂 𝑛! :(

Optimization is 𝑂 𝑑 :) 

Practical limitations: ~500k nodes if you are lucky, if not, ~50k

Node2vec: scalable feature learning for networks. Grover & Leskovec, KDD 2016

https://github.com/aditya-grover/node2vec
https://github.com/xgfs/node2vec-c


VERSE: algorithm overview

27

“Random walks define a similarity distribution”

Predictions with negative sampling

𝐖 𝐖!

shared representation

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018



VERSE: algorithm overview

28

“Random walks define a similarity distribution”

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018

𝑠𝑖𝑚(𝑢,⋅) 𝑠𝑖𝑚(𝑣,⋅)

𝑢 𝑣

𝑢

𝑣

Predictions with negative sampling

𝐖 𝐖!

shared representation

Sample nodes from similarity distributions



VERSE: algorithm overview

29

“Random walks define a similarity distribution”

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018

𝑢

𝑣

Predictions with negative sampling

𝐖 𝐖!

shared representation

𝑢

𝑣

Full similarity matrix M is never materialized

Sample nodes from similarity distributions



VERSE: interpretation of DeepWalk

30

DeepWalk random walks ~= Personalized PageRank

PPR parameter α = "#!
"$%

for DeepWalk’s 𝑤

We can now measure the quality of embedding directly :)

1 parameter instead of 3 or 5

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018



VERSE: asymptotics and practice

31

Simple & fast algorithm, good on symmetric link prediction :)

NB: if edges’ information is asymmetric, try using two matrices 𝐖,𝐖′𝐓

Optimization is 𝑂 𝑑 :)

Authors’ C++ implementation works well

Practical limitations: ~10M nodes

VERSE: Versatile graph embeddings from similarity measures. Tsitsulin et al., WWW 2018

https://github.com/xgfs/verse


Factorization embeddings



Anatomy of a factorization embedding

33

Construct a similarity matrix → do SVD

[1] Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016
[2] Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018
[3] Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. Qiu et al., WSDM 2018

U Σ V!



HOPE: algorithm overview

34

Do SVD on an implicit similarity matrix with sparse updates

U Σ V!

Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016



HOPE: algorithm overview

35

Do SVD on an implicit similarity matrix with sparse updates

Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016

JDGSVD decomposes dense similarity matrices of the form M"
#$M%

PPR / Katz similarity 



HOPE: asymptotics and practice

36

Does not work well for classification/link prediction :(

Horrible MATLAB code :(

Overall complexity is ~ O(d ∗m ∗ L) :)

Practical limitations: ~5M nodes + MATLAB license

Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016



AROPE: algorithm overview

37

Do eigen decomposition on the adjacency matrix, scale the λ’s

Q Λ Q!

Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018

Idea: f A ≈ Qf Λ Q!, works with Katz similarity



AROPE: asymptotics and practice

38

Does not work well for classification/link prediction :(

Easy to implement :)

Overall complexity is ~ O(d ∗m + d!n) :)

Actual speed depends on the eigensolver

Practical limitations: ~5M nodes

Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018



NetMF: algorithm overview

39

Let’s decompose DeepWalk’s similarity matrix

Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. Qiu et al., WSDM 2018

U Σ V!
DeepWalk’s M ≈ log(∑&'$$( D#$A)



NetMF: asymptotics and practice

40

Matrix M is dense, limiting scalability

A bridge between factorization and neural methods

Overall complexity is ~ O(n') ٩(ఠ益ఠ)۶

Practical limitations: ~10k nodes

Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018



Sketch-based embeddings



Anatomy of a sketch-based embedding

42

Iteratively approximate a higher-order embedding

[1] Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018
[2] Fast and Accurate Network Embeddings via Very Sparse Random Projection. Chen et al., CIKM 2018
[3] NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching. Yang et al., KDD 2019

U Σ



RandNE: algorithm overview

43

Approximate high-order M by iterative random projections

Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018

U

1. Start with U( = QR(𝒩(0, $
)
))

2. Iteratively set U& = A ∗ U&#$

3. Final embedding is a weighted sum U = 𝛼(U( + 𝛼$𝑈$ +⋯



RandNE: asymptotics and practice

44

NB: For decent downstream performance need to tune α(

Typically, we only need 3 multiplications (i = 3)

Overall complexity is ~ O(m + d!n) :)

Python and MATLAB code available

Practical limitations: ~1B nodes (need to store all U’s) 

Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018

https://github.com/ZW-ZHANG/RandNE


FastRP: algorithm overview

45

Approximate high-order M by iterative random projections

Fast and Accurate Network Embeddings via Very Sparse Random Projection. Chen et al., CIKM 2018

U

1. Start with U( =
3 𝑤. 𝑝. ⁄$ *
0 𝑤. 𝑝. ⁄$ +

− 3 𝑤. 𝑝. ⁄$ *

2. Iteratively set U& = A ∗ L ∗ U&#$, L ≈ degree normalization

3. Final embedding is a weighted sum U = 𝛼(U( + 𝛼$𝑈$ +⋯



FastRP: asymptotics and practice

46

NB: For good downstream performance need to tune α(, 𝛽

Typically, we only need 4 multiplications (i = 4)

Overall complexity is ~ O(m) :)

Python code available

Practical limitations: ~1B nodes (need to store all U’s) 

Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018

https://github.com/GTmac/FastRP


NodeSketch: algorithm overview

47

Approximate high-order M by iterative sketching

NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching. Yang et al., KDD 2019

U

1. Start with U( =sketch(A+I)

2. Iteratively sketch U& = sketch(α ∗ A ∗ U&#$)

3. Final embedding is simply U,



FastRP: asymptotics and practice

48

NB: For good downstream performance need to tune α

Typically, we only need 5 hashes k = 5

Overall complexity is ~ O(mk) :)

Python / C++ code available

Practical limitations: ~1B nodes (need to tune α)

NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching. Yang et al., KDD 2019

https://github.com/eXascaleInfolab/NodeSketch


Choosing the right algorithm

49

N<10k NetMF
Yes

N<1M

N
o

N
o

DeepWalk*, 
VERSE

RandNE, 
FastRP, 

NodeSketch

Yes

Start



Edge embeddings

50

NB: choose operator depending on the algorithm



Questions?

twitter twitter.com/tsitsulin_
website tsitsul.in/talks/ods ← presentation
write me anton@tsitsul.in


