# An opinionated guide to node embeddings

#### **Anton Tsitsulin**

Ph.D. student @ University of Bonn Student Researcher @ Google

#### Different domains:

- Information
- Social
- Biological
- Transportation
- ...



#### Different graph types:

- (Un)directed
- (Un)weighted
- Temporal
- Heterogeneous
- ...



#### Different modalities:

- Nodes
- Edges
- Motifs
- Subgraphs
- Whole graphs
- •



#### Different tasks:

- Classification
- Clustering
- Anomaly detection
- •



#### **Domains**

Information
Social
Biological
Transportation

#### **Graph Types**

(Un)directed (Un)weighted Temporal Heterogeneous

#### **Modalities**

Nodes Edges Subgraphs Whole graphs

#### **Tasks**

Classification Clustering Anomaly detection

#### **Domains**

Information
Social
Biological
Transportation

#### **Graph Types**

(Un)directed (Un)weighted Temporal Heterogeneous

#### **Modalities**

Nodes
Edges
Subgraphs
Whole graphs

#### **Tasks**

Classification Clustering Anomaly detection



Embeddings

#### **Domains**

Information
Social
Biological
Transportation

#### **Graph Types**

(Un)directed (Un)weighted Temporal Heterogeneous

#### **Modalities**

Nodes Edges Subgraphs Whole graphs

#### **Tasks**

Classification Clustering Anomaly detection

 $\downarrow$ 

Embeddings

### Why representations?

We have fast & good algorithms for mining vector data...



### Why representations?

We have fast & good algorithms for mining vector data...



### A brief history of node embeddings



### Algorithm

1-sentence summary of the contribution

Overview and inner workings of the algorithm

## Neural node embeddings

### Anatomy of a neural embedding

Nodes in random walks  $\approx$  words in sentences  $\rightarrow$  use word2vec



- [1] Efficient Estimation of Word Representations in Vector Space. Mikolov et al., NIPS 2013
- [2] DeepWalk: Online Learning of Social Representations. Perozzi et al., KDD 2014
- [3] node2vec: Scalable Feature Learning for Networks. Grover & Leskovec, KDD 2016
- [4] VERSE: Versatile Graph Embeddings from Similarity Measures. Tsitsulin et al., WWW 2018

### DeepWalk: algorithm overview

"Nodes in random walks  $\approx$  words in sentences  $\rightarrow$  use word2vec"

Start  $\gamma$  random walks of length t from each node

Predictions with hierarchical softmax  $\mathbf{W}'^{\mathrm{T}}$ 

use pairs within window size w

two representations

### DeepWalk: asymptotics and practice

In practice,  $\gamma = 80$ , t = 80, w = 10, meaning 80 \* 80 \* n of "text"

NB: never change w

If you lower w, increase  $\gamma$  and t

Parameter meaning is not trivial:(

### DeepWalk: asymptotics and practice

Python implementation generates all walks and calls word2vec

I wrote a C++ implementation that does not store extra walks

Optimization is still O(d \* log n) at each step :(

Practical limitations: ~3M nodes

#### LINE: algorithm overview

"Why use random walks when edges do the trick"



### LINE: algorithm overview

"Why use random walks when edges do the trick"



### LINE: asymptotics and practice

Simple & fast algorithm, not great on downstream tasks:(

**NB**: Set the total # of samples T proportional to # of edges

Optimization is O(dn):)

Authors' C++ implementation works well

Practical limitations: ~10M nodes

### Node2vec: algorithm overview

"Let's add two more parameters (p, q) to DeepWalk"



### Node2vec: algorithm overview

"Let's add two more parameters (p, q) to DeepWalk"



### Node2vec: myth 1

Myth: parameters (p, q) are related to BFS and DFS

Reality: parameters (p, q) are related to triangles  $\approx$  clusters

Low q → explore intra-cluster information

High  $q \rightarrow explore$  inter-cluster information

### Node2vec: myth 2

Myth: node2vec is a scalable algorithm

Reality: second-order random walks are worst-case  $O(n^2)$ 

Worst case is a star graph

(or any graph with very high-degree nodes)



### Node2vec: asymptotics and practice

**NB**: comparisons in the paper are misleading ( $\gamma = 10$  for all methods)

In the paper,  $\gamma = 10$ , t = 80, w = 10, hyperparameter search for (p, q)

Setting  $\gamma = 10$  gives worse results, please use  $\gamma = 80$ 

Tuning (p, q) is not beneficial on most graphs

### Node2vec: asymptotics and practice

Python implementation generates all walks and calls word2vec

I wrote a C++ implementation that does not store extra walks

Preprocessing can be  $O(n^2)$ :(

Optimization is O(d):)

Practical limitations: ~500k nodes if you are lucky, if not, ~50k

#### VERSE: algorithm overview

"Random walks define a similarity distribution"



### VERSE: algorithm overview

"Random walks define a similarity distribution"



### VERSE: algorithm overview

"Random walks define a similarity distribution"

Sample nodes from similarity distributions



### VERSE: interpretation of DeepWalk

DeepWalk random walks ~= Personalized PageRank

PPR parameter 
$$\alpha = \frac{w-2}{w+1}$$
 for DeepWalk's  $w$ 

We can now measure the quality of embedding directly:)

1 parameter instead of 3 or 5

### VERSE: asymptotics and practice

Simple & fast algorithm, good on symmetric link prediction:)

NB: if edges' information is asymmetric, try using two matrices W, W'T

Optimization is O(d):)

Authors' C++ implementation works well

Practical limitations: ~10M nodes

# Factorization embeddings

### Anatomy of a factorization embedding

Construct a similarity matrix → do SVD



- [1] Asymmetric transitivity preserving graph embedding. Ou et al., KDD 2016
- [2] Arbitrary-order proximity preserved network embedding. Zhang et al., KDD 2018
- [3] Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. Qiu et al., WSDM 2018

### HOPE: algorithm overview

Do SVD on an implicit similarity matrix with sparse updates



### HOPE: algorithm overview

Do SVD on an implicit similarity matrix with sparse updates



### HOPE: asymptotics and practice

Does not work well for classification/link prediction:(

Horrible MATLAB code :(

Overall complexity is  $\sim O(d * m * L)$ :)

Practical limitations: ~5M nodes + MATLAB license

#### AROPE: algorithm overview

Do eigen decomposition on the adjacency matrix, scale the  $\lambda$ 's



#### AROPE: asymptotics and practice

Does not work well for classification/link prediction:(

Easy to implement:)

Overall complexity is  $\sim O(d * m + d^2n)$ :)

Actual speed depends on the eigensolver

Practical limitations: ~5M nodes

## NetMF: algorithm overview

Let's decompose DeepWalk's similarity matrix



#### NetMF: asymptotics and practice

Matrix M is dense, limiting scalability

A bridge between factorization and neural methods

Overall complexity is ~ O(n³) ९(o益o)?

Practical limitations: ~10k nodes

# Sketch-based embeddings

### Anatomy of a sketch-based embedding

<u>Iteratively</u> approximate a higher-order embedding



- [1] Billion-scale Network Embedding with Iterative Random Projection. Zhang et al., ICDM 2018
- [2] Fast and Accurate Network Embeddings via Very Sparse Random Projection. Chen et al., CIKM 2018
- [3] NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching. Yang et al., KDD 2019

#### RandNE: algorithm overview

Approximate high-order M by iterative random projections



3. Final embedding is a weighted sum U =  $\alpha_0 U_0 + \alpha_1 U_1 + \cdots$ 

#### RandNE: asymptotics and practice

**NB:** For decent downstream performance need to tune  $\alpha_i$ 

Typically, we only need 3 multiplications (i = 3)

Overall complexity is  $\sim O(m + d^2n)$ :)

Python and MATLAB code available

Practical limitations: ~1B nodes (need to store all U's)

#### FastRP: algorithm overview

Approximate high-order M by iterative random projections



3. Final embedding is a weighted sum  $U = \alpha_0 U_0 + \alpha_1 U_1 + \cdots$ 

#### FastRP: asymptotics and practice

**NB:** For good downstream performance need to tune  $\alpha_i$ ,  $\beta$ 

Typically, we only need 4 multiplications (i = 4)

Overall complexity is  $\sim O(m)$ :)

Python code available

Practical limitations: ~1B nodes (need to store all U's)

### NodeSketch: algorithm overview

#### Approximate high-order M by iterative sketching



3. Final embedding is simply  $U_{\rm k}$ 

### FastRP: asymptotics and practice

**NB:** For good downstream performance need to tune  $\alpha$ 

Typically, we only need 5 hashes k = 5

Overall complexity is  $\sim O(mk)$ :)

Python / C++ code available

Practical limitations: ~1B nodes (need to tune  $\alpha$ )

### Choosing the right algorithm



#### Edge embeddings

| Operator    | Result                                                                      |
|-------------|-----------------------------------------------------------------------------|
| Average     | $(\mathbf{a} + \mathbf{b})/2$                                               |
| Concat      | $[\mathbf{a}_1,, \mathbf{a}_d, \mathbf{b}_1,, \mathbf{b}_d]$                |
| Hadamard    | $[\mathbf{a}_1*\mathbf{b}_1,,\mathbf{a}_d*\mathbf{b}_d]$                    |
| Weighted L1 | $[ \mathbf{a}_1 - \mathbf{b}_1 ,,  \mathbf{a}_d - \mathbf{b}_d ]$           |
| Weighted L2 | $[(\mathbf{a}_1 - \mathbf{b}_1)^2, \dots, (\mathbf{a}_d - \mathbf{b}_d)^2]$ |

Table 2.3: Vector operators used for link-prediction task for each  $u, v \in V$  and corresponding embeddings  $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$ .

**NB:** choose operator depending on the algorithm

# Questions?

twitter website write me

twitter.com/tsitsulin\_tsitsul.in/talks/ods anton@tsitsul.in

← presentation