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Defining graph similarity

With it, we can do:
• Classification

• Clustering

• Anomaly detection

• …
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Scalability is key!

Two problem sources:
• Big graphs
• Many graphs

Solution: graph descriptors
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Isomorphism ⇒ 𝑑 𝐺1, 𝐺2 = 0

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance
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Local structures are important
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Global structure is important
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We may need to disregard the size

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance
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Network Laplacian Spectral Descriptors

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

+ Scalability

= NetLSD
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Optimal Transport

Geometry for probability measures supported on a space.
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Optimal Transport

Geometry for probability measures supported on a space.
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Discrete case → 
Linear programming

𝜈
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Gromov-Wasserstein distance 
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Heat diffusion has an explicit notion of scale
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Heat kernel has an explicit notion of scale
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Scale corresponds to locality

21



Scale corresponds to locality
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Spectral Gromov-Wasserstein =
Gromov-Wasserstein + heat kernel

Using heat kernel at all 𝑡 as a distance
doesn’t make our task any easier
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has a useful lower bound!
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Network Laplacian Spectral Descriptors

We sample 𝑡 logarithmically, and compare ℎ𝑡 with 𝐿2 distance
However, ℎ𝑡 is size-dependent!
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Size invariance = normalization

We can normalize by ℎ𝑡 of the complete (𝐾) or empty graph ഥ𝐾
Computation of all 𝜆 is still expensive: 𝑂(𝑛3)
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Scalability

We propose two options:
1. Use local Taylor expansion: 

Second term is degree distribution; third is weighted triangle count
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Scalability

We propose two options:
1. Use local Taylor expansion: 

Second term is degree distribution; third is weighted triangle count

2. Compute top + bottom eigenvalues, approximate the rest
Linear extrapolation = explicit assumption on the manifold (Weyl’s law)

Other spectrum approximators can be even more efficient!
[Cohen-Steiner et al. | KDD 2018]

[Adams et al. | arXiv 1802.03451] 
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Experimental design

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance
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Detecting graphs with communities

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

Accuracy of classification of SBM vs Erdős–Rényi graphs

NetLSD

NIPS’17
ASONAM’13
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Detecting rewired graphs

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

Accuracy of classification of real vs rewired graphs

NetLSD

NIPS’17
ASONAM’13
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Classifying real graphs

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

Accuracy of graph classification

NetLSD

NIPS’17
ASONAM’13
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Expressive graph comparison

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

+ Scalability

= NetLSD
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Questions?

code github.com/xgfs/netlsd
website tsitsul.in/publications/netlsd
shy? anton@tsitsul.in



Network Laplacian Spectral Descriptors:
wave kernel trace

We sample 𝑡 logarithmically, and compare Re(𝑤𝑡) with 𝐿2 distance
𝑤𝑡 detects symmetries!
≈quantum random walks
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Hearing the Shape of a Graph

“Can One Hear the Shape of a Drum?” – Kac 1966

No, as there are co-spectral drums (graphs)

Conjecture: # of co-spectral graphs → 0 as # of nodes → ∞
[Dufree, Martin 2015]

38


