NetLSD: hearing the shape of a graph

Anton Tsitsulin1Davide Mottin1Panagiotis Karras2Alex Bronstein3Emmanuel Müller1

Defining graph similarity

With it, we can do:

- Classification
- Clustering
- Anomaly detection

• ..

Scalability is key!

Two problem sources:

- Big graphs
- Many graphs

Solution: graph descriptors

$\mathsf{Isomorphism} \Rightarrow d(G_1, G_2) = 0$

- Permutation invariance
- Scale-adaptivity
- Size invariance

Local structures are important

- Permutation invariance
- Scale-adaptivity
- Size invariance

Global structure is important

- Permutation invariance
- Scale-adaptivity
- Size invariance

We may need to disregard the size

- Permutation invariance
- Scale-adaptivity
- Size invariance

Network Laplacian Spectral Descriptors

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance
- + Scalability

= NetLSD

Geometry for probability measures supported on a space.

Geometry for probability measures supported on a space.

G. Monge 1781 L. Kantorovich 1939

Geometry for probability measures supported on a space.

G. Monge

1781

L. Kantorovich

1939

Geometry for probability measures supported on a space.

G. Monge

1781

L. Kantorovich

1939

Geometry for probability measures supported on a space.

G. Monge 1781

L. Kantorovich 1939

Geometry for probability measures supported on a space.

G. Monge 1781 L. Kantorovich 1939

Discrete case \rightarrow Linear programming ν

$$d_{\mathcal{GW},p}(X,Y) = \frac{1}{2} \left(\inf_{M} \sum_{i,j} \sum_{i',j'} \left| d(x_i, x_{i'}) - \bar{d}(y_j, y_{j'}) \right|^p m_{ij} m_{i'j'} \right)^{1/p}$$

Heat diffusion has an explicit notion of scale

$$\frac{\partial u_t}{\partial t} = -\mathcal{L}u_t$$

Heat kernel has an explicit notion of scale

$$H_t = e^{-t\mathcal{L}} = \Phi e^{-t\Lambda} \Phi^\top = \sum_{j=1}^n e^{-t\lambda_j} \phi_j \ \phi_j^\top$$

Scale corresponds to locality

$$H_t = e^{-t\mathcal{L}} = \Phi e^{-t\Lambda} \Phi^\top = \sum_{j=1}^n e^{-t\lambda_j} \phi_j \ \phi_j^\top$$

t = 0.0100

t = 10.0000

Scale corresponds to locality

$$H_t = e^{-t\mathcal{L}} = \Phi e^{-t\Lambda} \Phi^\top = \sum_{j=1}^n e^{-t\lambda_j} \phi_j \ \phi_j^\top$$

t = 0.0100

t = 10.0000

Spectral Gromov-Wasserstein = Gromov-Wasserstein + heat kernel

$$d_{\mathcal{GW},p}^{\text{spec}}(X,Y) = \inf_{M} \sup_{t>0} e^{-2(t+t^{-1})} \cdot \left(\sum_{i,j} \sum_{i',j'} \left| H_t^X(x_i,x_{i'}) - H_t^Y(y_j,y_{j'}) \right|^p m_{ij} m_{i'j'} \right)^{1/p}$$

t = 1.0000

Using heat kernel at all *t* as a distance doesn't make our task any easier

Spectral Gromov-Wasserstein has a useful lower bound!

$$d_{\mathcal{GW},p}^{\text{spec}}(X,Y) = \inf_{M} \sup_{t>0} e^{-2(t+t^{-1})} \cdot \left(\sum_{i,j} \sum_{i',j'} \left| H_t^X(x_i,x_{i'}) - H_t^Y(y_j,y_{j'}) \right|^p m_{ij} m_{i'j'} \right)^{1/p} \ge \sup_{t>0} e^{-2(t+t^{-1})} \cdot |\operatorname{tr}(H^X) - \operatorname{tr}(H^Y)|$$

Using heat kernel at all *t* as a distance **does** make our task **way** easier!

Spectral Gromov-Wasserstein has a useful lower bound!

$$d_{\mathcal{GW},p}^{\text{spec}}(X,Y) = \inf_{M} \sup_{t>0} e^{-2(t+t^{-1})} \cdot \left(\sum_{i,j} \sum_{i',j'} \left| H_t^X(x_i,x_{i'}) - H_t^Y(y_j,y_{j'}) \right|^p m_{ij} m_{i'j'} \right)^{1/p} \ge \sup_{t>0} e^{-2(t+t^{-1})} \cdot |\operatorname{tr}(H^X) - \operatorname{tr}(H^Y)|$$

Using heat kernel at all *t* as a distance **does** make our task **way** easier!

We can just compare heat traces!

Network Laplacian Spectral Descriptors

$$h_t = \operatorname{tr}(H_t) = \sum_j e^{-t\lambda_j}$$

We sample t logarithmically, and compare h_t with L_2 distance However, h_t is size-dependent!

Size invariance = normalization

$$h_t = \operatorname{tr}(H_t) = \sum_j e^{-t\lambda_j}$$

We can normalize by h_t of the complete (K) or empty graph \overline{K} Computation of all λ is still expensive: $O(n^3)$

Scalability

We propose two options:

1. Use local Taylor expansion:
$$h_t = \operatorname{tr}(e^{-t\mathcal{L}}) = \sum_{k=0}^{\infty} \frac{\operatorname{tr}((-t\mathcal{L})^k)}{k!} \approx n - t \operatorname{tr}(\mathcal{L}) + \frac{t^2}{2} \operatorname{tr}(\mathcal{L}^2) + \dots$$

Second term is degree distribution; third is weighted triangle count

Scalability

We propose two options:

1. Use local Taylor expansion: $h_t = \operatorname{tr}(e^{-t\mathcal{L}}) = \sum_{k=0}^{\infty} \frac{\operatorname{tr}((-t\mathcal{L})^k)}{k!} \approx n - t \operatorname{tr}(\mathcal{L}) + \frac{t^2}{2} \operatorname{tr}(\mathcal{L}^2) + \dots$

Second term is degree distribution; third is weighted triangle count

2. Compute top + bottom eigenvalues, approximate the rest Linear extrapolation = explicit assumption on the manifold (Weyl's law)

Scalability

We propose two options:

1. Use local Taylor expansion: $h_t = \operatorname{tr}(e^{-t\mathcal{L}}) = \sum_{k=0}^{\infty} \frac{\operatorname{tr}((-t\mathcal{L})^k)}{k!} \approx n - t \operatorname{tr}(\mathcal{L}) + \frac{t^2}{2} \operatorname{tr}(\mathcal{L}^2) + \dots$

Second term is degree distribution; third is weighted triangle count

2. Compute top + bottom eigenvalues, approximate the rest Linear extrapolation = explicit assumption on the manifold (Weyl's law)

Other spectrum approximators can be even more efficient!

[Cohen-Steiner et al. | KDD 2018]

[Adams et al. | arXiv 1802.03451]

Experimental design

- Permutation invariance
- Scale-adaptivity
- Size invariance

Detecting graphs with communities

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance

				$n \sim \mathcal{P}(\lambda)$		
	Method	64	128	256	512	1024
NetLSD	$ \begin{array}{c} h(G) \\ h(G)/h(\bar{K}) \end{array} $	$54.39 \\ 54.53$	$59.01 \\ 62.27$		$57.99 \\ 76.45$	$53.80 \\ 78.40$
	$w(G) \ w(G)/w(ar{K})$	$56.23 \\ 55.51$	$63.77 \\ 63.85$	$69.57 \\ 72.12$	$71.66 \\ 77.59$	70.34 79.39
NIPS'17 ASONAM'13	FGSD NetSimile	$\begin{array}{c} 55.44 \\ 59.55 \end{array}$	$54.99 \\ 56.57$	$53.86 \\ 59.41$	$52.74 \\ 66.23$	$50.92 \\ 60.58$

Accuracy of classification of SBM vs Erdős–Rényi graphs

- / - -

Detecting rewired graphs

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance

		dataset					
	Method	MUTAG	PROTEINS	NCI1	ENZYMES	COLLAB	IMDB-B
NetLSD	$ \begin{array}{c} h(G) \\ h(G)/h(\bar{K}) \end{array} $	$76.03 \\ 79.12$	91.81 94.90	$69.74 \\ 74.55$	92.51 95.20	$59.82 \\ 65.85$	$67.18 \\ 70.58$
	$w(G) \ w(G)/w(\bar{K})$	78.18 79.72	$93.04 \\ 89.00$	70.54 74.14	94.03 90.77	$69.01 \\ 70.35$	$75.26 \\ 75.54$
NIPS'17 ASONAM'13	FGSD NetSimile	$77.79 \\ 77.11$		$64.08 \\ 58.58$	$53.93 \\ 87.38$	$55.18 \\ 54.43$	56.23 54.44

Accuracy of classification of real vs rewired graphs

Classifying real graphs

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance

		dataset					
	Method	MUTAG	PROTEINS	NCI1	ENZYMES	COLLAB	IMDB-B
NetLSD -	$ \begin{array}{c} h(G) \\ h(G)/h(\bar{K}) \end{array} $	$86.47 \\ 85.32$	$64.89 \\ 65.73$	$\begin{array}{c} 66.49 \\ 67.44 \end{array}$	$31.99 \\ 33.31$	$\begin{array}{c} 68.00\\ 69.42\end{array}$	$68.04 \\ 70.17$
	$w(G) \ w(G)/w(\bar{K})$	$83.35 \\ 81.72$	$66.80 \\ 65.58$	$70.78 \\ 67.67$	$40.41 \\ 35.78$	75.77 77.24	68.63 69.33
NIPS'17 ASONAM'13	FGSD NetSimile	$84.90 \\ 84.09$	65.30 62.45	75.77 66.56	41.58 33.23	$73.96 \\ 73.10$	$69.54 \\ 69.20$

Accuracy of graph classification

Expressive graph comparison

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance
- + Scalability

= NetLSD

Questions?

code	github.com/xgfs/netlsd
website	tsitsul.in/publications/netlsd
shy?	anton@tsitsul.in

Network Laplacian Spectral Descriptors: wave kernel trace

$$w_t = \operatorname{tr}(W_t) = \sum_j e^{-it\lambda_j}$$

We sample t logarithmically, and compare $\text{Re}(w_t)$ with L_2 distance w_t detects symmetries! \approx quantum random walks

Hearing the Shape of a Graph

"Can One Hear the Shape of a Drum?" – Kac 1966

No, as there are co-spectral drums (graphs)

Conjecture: # of co-spectral graphs $\rightarrow 0$ as # of nodes $\rightarrow \infty$ [Dufree, Martin 2015]