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Introduc'on
On the importance of graphs, 
similari'es, and representa'ons 



What are graphs?
Graphs are representa'ons    
of rela3onships (edges) 
between en33es (nodes). 

There are two important types: 

1. Natural graphs are graphs in 
which edges naturally come 
from an external source. 

2. Similarity graphs in which the 
edge rela3onship is based on 
some similarity measure 
between nodes.

3

Examples of natural graphs: 
social networks, protein interactomes, 
road graphs, co-purchase graphs, … 
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Graphs are everywhere
Graphs have numerous applica3ons 
in biology, social sciences, physics 
and machine learning. 

Typically, we want predic3ons on 
the nodes or whole graphs. 

Graphs in the real world are large 
and numerous.

4

(Stokes et al., Cell’20)
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Similari'es
A no3on of similarity* between objects is key for data analysis.  

If we have such no3on, it is easy to do: 

1. Classifica3on with kernel-based methods 

2. Clustering with linkage algorithms 

3. Anomaly detec3on with distance heuris3cs 

4. A whole lot of other tasks! 

* a pseudometric
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Representa'ons
Suitable representa3on is crucial for efficient similarity computa3on. 

Representa3ons that lie in some low-dimensional space are called explicit. 
They are more favourable than those with implicit comparisons:       

1. Faster similarity computa3on 

2. Approximate nearest neighbour search 

3. Easier indexing & advanced range queries 

The world is built for dense Euclidean data!
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Representa'on and similarity design

Efficient computa3on 
of representa3ons
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Expressive comparison 
of objects



Thesis overview
Core proposal, chapter summary, 
and main contribu'ons 



Core thesis proposal

Scalable, theore'cally grounded algorithms   
for building explicit, expressive representa3ons 

of graph-structured data
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For explainability and to ensure 
the performance of the algorithms
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Core thesis proposal

Scalable, theore'cally grounded algorithms   
for building explicit, expressive representa3ons 

of graph-structured data
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With excellent performance 
across applica3on domains



Thesis structure
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Representa+ons of nodes 

• Chapter 4: Versa3le representa3ons from 
similarity measures [TMKM, WWW’18] 

• Chapter 5: Any3me node embeddings with 
quality guarantees [TMMKOM, VLDB’21] 

• Chapter 6: Local node embeddings via 
approximate node similarity [PTATSB, in subm.] 

• Chapter 7: Node representa3ons for 
clustering [TPPM, in submission]

Representa+ons of graphs 

• Chapter 9: Spectral op3mal transport-based 
graph representa3ons [TMKBM, KDD’18] 

• Chapter 10: Self-supervised spectral graph 
representa3ons [TMKBM] 

• Chapter 11: Scalable approxima3ons for 
graph embeddings [TMB, WWW’20] 

• Chapter 12: ML applica3ons: comparing data 
distribu3ons [TMMKBOM, ICLR’20]



Introduc'on to node representa'ons
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We use node embeddings to avoid slow, domain-specific graph algorithms 
for node classifica3on, semi-supervised clustering, and anomaly detec3on.

Log. regression

embedding



Chapter 4: Versa'le node embeddings
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Core idea: 

We can convert node similarity distribu3ons that allow sampling into 
representa3ons in the Euclidean space with a single-layer neural network. 

Contribu'ons: 

• Time and space complexi3es of VERSE are  and  compared to  or  
3me and  space complexity of the previous work. 

• Interpreta3on of previous work in terms of personalised PageRank. 

• State-of-the-art results in node classifica3on and link predic3on, independently verified in 
(Mara et al., 2020)

𝒪(n) 𝒪(m) 𝒪(n log n) 𝒪(n3)
𝒪(n3)

Similarity VERSE SVD
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Chapter 5: Any'me node embeddings

13

Core idea: 

Neural embedding models implicitly performs matrix factorisa3on. Instead of 
factorising, we sketch a matrix to achieve provable covariance error in linear 3me. 

Contribu'ons: 
• We analyse the op3mal solu3on of VERSE, and interpret its solu3on as matrix factorisa3on. 

• Instead of  factorisa3on, sketch the matrix row-by-row, with guarantees on the solu3on. 
Time complexity is  amor3sed per row. The solu3on can be retrieved at any 'me. 

• Compe33ve results in quality on some datasets with processing less that 1% of nodes!

𝒪(n3)
𝒪(n)
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Chapter 6: Local node embeddings

14

Core idea: 

Hashing a similarity row is a local opera3on; a local similarity, such as 
approximate personalised PageRank, yields a first local embedding algorithm. 

Contribu'ons: 
• We formulate the requirements for a local embedding algorithm to be useful in prac3ce. 

• We prove that the 3me complexity of our algorithm is sublinear to the number of graph nodes. 

• Experimentally, our algorithm achieves similar or beler performance at the 3me cost 9,000× 
less than the fastest baseline. Our algorithm is also trivially distributable and parallelizable. 
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Chapter 7: Deep modularity networks

15

Core idea: 

In alributed graphs, no explicit similarity can capture different signal strength 
from graph structure and node features. We use a spectral form of the modularity 
clustering as a differen3able objec3ve func3on for graph neural network. 

Contribu'ons: 
• We formulate a first end-to-end graph clustering method u3lising graph neural networks and 
develop a novel regularizer that empirically allows for beler op3miza3on. 

• We develop a novel way of benchmarking graph neural networks (published at GLB workshop).  

• Empirically, we outperform compe3ng neural network methods by up to 50% in terms of graph 
metrics and ground truth label correla3on.
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Introduc'on to graph representa'ons
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In real world, we have graphs with >1 billion 
edges. We also have millions of small graphs 
that need to be represented. 

Isomorphism or edit distance computa3ons 
are imprac3cal on graphs with >100 nodes. 
Kernels are not suited for large collec3ons. 

Thus, we need scalable algorithms for 
embedding graphs in the Euclidean space.



Chapter 9: Spectral graph similarity

17

Core idea: 

Heat kernel trace is an easy-to-compute lower bound to Gromov–Wasserstein 
distance. We can use the trace of a heat kernel as an embedding of a graph. 

Contribu'ons: 
• NetLSD is the first mul3–scale graph comparison method that works on unaligned graphs. 
The method is also op3onally size–invariant. 

• We propose two approxima3on schemes that bring down the 3me complexity of the 
computa3on from  to  without impac3ng the downstream task quality. 

• We show that NetLSD significantly outperforms its less scalable counterparts on real and 
synthe3c graphs in a variety of tasks. 

𝒪(n3) 𝒪(m)

Small t Medium t Large t
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Chapter 10: Learned graph similarity

18

Core idea: 

Heat kernel trace is a set of func3ons applied to the spectrum of the graph.    
Can we train a self-supervised neural network to learn these func3ons? 

Contribu'ons: 
• The first self-supervised method for learning graph representa3ons. Next one is 2020! 

• We proposed to use two tasks for pre-training: one local and one global. 

• In an extensive set of experiments we demonstrate that no one-size-fits-all solu3on is possible. 

Pre-trained on the global graph structure

Pre-trained on the local graph structure



Chapter 10: Learned graph similarity

18

Core idea: 

Heat kernel trace is a set of func3ons applied to the spectrum of the graph.    
Can we train a self-supervised neural network to learn these func3ons? 

Contribu'ons: 
• The first self-supervised method for learning graph representa3ons. Next one is 2020! 

• We proposed to use two tasks for pre-training: one local and one global. 

• In an extensive set of experiments we demonstrate that no one-size-fits-all solu3on is possible. 



Chapter 11: Approxima'ng spectral similari'es
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Core idea: 

Spectral func3ons in NetLSD can be approximated with the state-of-the-art 
numerical linear algebra techniques. 

Contribu'ons: 
• SLaQ is the first distance func3on to scale to billion-node graphs. 

• We derive the error bounds for NetLSD and show how to support other spectral func3ons. 

• Experimentally, approxima3on error is 20–200× less than other methods, including ones 
proposed in Chapter 9. The computa3ons are faster than some naïve baselines. 
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Chapter 12:  
Comparing data distribu'ons with graph-based similari'es
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Core idea: 

Laplacian of the k-NN graph approximates the Laplacian of the data manifold.      
We can then leverage NetLSD and SLaQ to provide a scalable distance measure 
for data distribu3ons that can even lie in spaces of different dimensionality. 

Contribu'ons: 
• IMD is the first method to compare unaligned data manifolds. 

• It is also the first mul3-scale metric for genera3ve adversarial networks (GANs). 

• We demonstrate IMD’s applicability on a broad set of tasks, including introspec3on into 
transforma3ons induced by neural networks, distances between languages through the lens of 
their words, and genera3ve adversarial network model evalua3on.
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Contribu'on summary
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Representa+ons of nodes 

• First local, first any3me algorithms 

• Scalability to orders of magnitude 
larger graphs than reported before, 
even by commercial systems 

• A new paradigm for learning 
embeddings through graph clustering

Representa+ons of graphs 

• First mul3-scale, first self-supervised 
representa3on-based distances 

• Scalable to unaligned graphs with 
billion+ nodes on a single server in 15m 

• Broad applica3ons in machine 
learning and graph mining 



Deeper dive: 
node embeddings
An in-depth review of proposed techniques 



Versa'le node embeddings

23

Core idea: abstract node similari3es away from the representa3on framework.

Sample nodes from similarity distribu'ons

Predic3ons with nega3ve sampling

Shared representa3on

sim(u, ⋅ ) sim(v, ⋅ )

U UT
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Core idea: abstract node similari3es away from the representa3on framework.

Sample nodes from similarity distribu'ons

Predic3ons with nega3ve sampling

Shared representa3on

sim(u, ⋅ ) sim(v, ⋅ )

Full similarity matrix  is never materialisedM
Update  with gradient descent U

U UT
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Any'me node embeddings

24

Core idea: we do not need to waste resources to compute , and  can be 
incrementally sketched with embeddings available at any 3me!

VT U

M
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Any'me node embeddings
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Core idea: we do not need to waste resources to compute , and  can be 
incrementally sketched with embeddings available at any 3me!

VT U

M U Σ

When   is full, do SVD on itU
Retrieve  at any 3me!U



Local node embeddings

25

Core idea: we do not need to waste any resources, let’s not compute rows of  
that we will not need! Hash the sparse similarity values into  directly.

U
U
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Local node embeddings
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Core idea: we do not need to waste any resources, let’s not compute rows of  
that we will not need! Hash the sparse similarity values into  directly.

U
U

M U

Hash  as follows: M Uv,h(i) += hsign(i) × max (0, log Mvi)



Algorithm analysis
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Time complexity: 

• Reduc3on from  to  3me complexity for VERSE 

• Reduc3on from  3me and  space to  3me and  space for FREDE 

• Local algorithm’s complexity independent of graph size 

Guarantees & analysis: 

• VERSE shaves off 3 unnecessary parameters of the previous SotA 

• FREDE offers fist-of-their-kind guarantees on the covariance of node embeddings 

• Local algorithm provably converges to the global solu3on; proofs of sublinear 3me & memory

𝒪(n log n) 𝒪(n)

𝒪(n3) 𝒪(n2) 𝒪(n2) 𝒪(n)



As good as we can get?

27



As good as we can get?

27

No.
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No.

Our local method does not have quality guarantees, only asympto3c convergence.

Approximate similarity computa3ons will lead to other, faster algorithms.

Embeddings of large billion-scale graphs are s3ll unexplored by any other method.

Good luw.
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Open-source

Reproduced 
by others

Works           
in produc3on

Opened new 
research direc3ons

Simplified and explained 
previous work



Spectral graph embeddings
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Core idea: heat kernel trace is a very useful representa3on.

Ht = e−tℒ = Φe−tΛΦ⊤ =
n

∑
j=1

e−tλjϕjϕ⊤
j

Tr(Ht) =
n

∑
j=1

e−tλj

dspec
GW,p(X, Y ) = inf

M
sup
t>0

e−2(t + t−1) ⋅ ∑
i,j

∑
i′ j′ 

HX
t (xi, xi′ 

) − HY
t (yi, yi′ 

)
p

mijmi′ j′ 

1/p

≥ sup
t>0

e−2(t + t−1) ⋅ Tr (HX
t ) − Tr (HY

t )

 easy to compute!



Approximate spectral similari'es
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Core idea: we can approximate trace of matrix func3ons with stochas3c es3ma3on.

Hutchinson trace es3mator                        

Gaussian quadrature                                   

s-step Lanczos algorithm                           with weights  and points 

Tr (f (M)) = 𝔼 [z⊤ f(M)z]
𝔼 [z⊤ f(M)z] ≈

s

∑
k=1

wk f (xk)

wk xk



Extra: link predic'on from embeddings
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Extra: link predic'on from embeddings
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❤

(Mara et al., 2020)

Link predic3on: VERSE is 
the best-ranking method 
in an independent study


