Similarities and Representations
of Graph Structures

Anton Tsitsulin

\U \

\?‘

5

UNIVERSITAT

Introduction

On the importance of graphs,
similarities, and representations

R

i

v? |
g

What are graphs?

Graphs are representations
of relationships (edges)
between entities (nodes).

There are two important types:

1. Natural graphs are graphs in
which edges naturally come
from an external source.

2. Similarity graphs in which the
edge relationship Is based on
some similarity measure
between nodes.

-xamples of natural graphs:
soclal networks, protein interactomes,
road graphs, co-purchase grapns, ...

What are graphs?

Graphs are representations
of relationships (edges)
between entities (nodes).

There are two important types:

1. Natural graphs are graphs in ‘
which edges naturally come
from an external source.

2. Similarity graphs in which the
edge relationship Is based on
some similarity measure
between nodes.

-xamples of natural graphs:
soclal networks, protein interactomes,
road graphs, co-purchase grapns, ...

What are graphs?

Graphs are representations O
of relationships (edges)
between entities (nodes).

O
There are two Important types: O O

1. Natural graphs are graphs in O O
which edges naturally come
from an external source.

2. Similarity graphs in which the
edge relationship Is based on | o
some similarity measure We can build similarity graphs

between nodes. from any type of data!

What are graphs?

Graphs are representations O
of relationships (edges)
between entities (nodes).

There are two important types: 0.9 O O

0.05

1. Natural graphs are graphs in
which edges naturally come
from an external source.

2. Similarity graphs in which the O
edge relationship Is based on

some similarity measure We can build similarity graphs
between nodes. from any type of data!

What are graphs?

Graphs are representations O
of relationships (edges)
between entities (nodes).

There are two Important types: O O

1. Natural graphs are graphs in O
which edges naturally come
from an external source.

2. Similarity graphs in which the O
edge relationship Is based on

some similarity measure We can build similarity graphs
between nodes. from any type of data!

What are graphs?

Graphs are representations
of relationships (edges)
between entities (nodes).

There are two important types:

1. Natural graphs are graphs in
which edges naturally come
from an external source.

2. Similarity graphs in which the
edge relationship Is based on | o
some similarity measure We can build similarity graphs

between nodes. from any type of data!

Graphs are everywhere

Graphs have numerous applications
IN biology, social sciences, physics
aﬂd maChlﬂe ‘ea rﬂlﬂg nature View all journals SearchQ

Explore content v Journal information v Publish with us v

Typically, we want predictions on
the nodes or whole graphs.

nature > news > article

NEWS - 20 FEBRUARY 2020

Powerful antibiotics discovered using Al

Machine learning spots molecules that work even against ‘untreatable’ strains of bacteria.

Graphs in the real world are large
and numerous.

Jo Marchant

(Stokes et al., Cell'20)

Graphs are everywhere

Graphs have numerous applications @) DeepMing
n biology, socia >CIENTES, physics Traffic prediction with advanced
and machine learning. nature Graph Neural Networks
. . . o o Goo le Ma sETA Im roverT_ments Around the World
Typically, we want predictions on . —
the nodes or whole graphs.
. i : EEEEEIER T
Graphs in the real world are large .. .+ "7 e 5 - 37%
and numerous. 34% , E1%
31%

Similarities
A notion of similarity™ between objects is key for data analysis.

T we have such notion, It Is easy to do:
1. Classification with kernel-based methods

2. Clustering with linkage algorithms

3. Anomaly detection with distance heuristics

4. A whole lot of other tasks!

*a pseudometric

Representations

Suitable representation is crucial for efficient similarity computation.

Representations that lie in some low-dimensio
They are more favourable than those with imp

1. Faster similarity computation
2. Approximate nearest neighbour search

3. Easler indexing & advanced range gueries

The world is built for dense Euclidean data!

nal space are called explicit.

ICIt comparisons:

Representation and similarity design

Efficient computation Expressive comparison
of representations of objects

Thesis overview

Core proposal, chapter summary,
and main contributions

Core thesis proposal

Scalable, theoretically grounded algorithms
for building explicit, expressive representations
of graph-structured data

Core thesis proposal

Because graphs in the real
world are big and numerous

Scalable, theoretically grounded algorithms
for building explicit, expressive representations
of graph-structured data

Core thesis proposal

For explainability and to ensure
the performance of the algorithms

Scalable, theoretically grounded algorithms
for building explicit, expressive representations
of graph-structured data

Core thesis proposal

Scalable, theoretically grounded algorithms
for building explicit, expressive representations
~I\raph-structured data

Because the world is built
for dense Euclidean data

Core thesis proposal

Scalable, theoretically grounded algorithms
for building explicit, expressive representations

Of grapn-strys -===—=
With excellent performance
across application domains

Thesis structure

Representations of nodes

e Chapter 4: Versatile representations from
similarity measures |[TMKM, WWW'18]

e Chapter 5: Anytime node embeddings with
quality guarantees [TMMKOM, VLDB'21]

e Chapter 6: Local node embeddings via
approximate node similarity [PTATSB, in subm.]

e Chapter /: Node representations for
clustering [TPPM, in submission]

Representations of graphs

e Chapter 9: Spectral optimal transport-based
oraph representations [TMKBM, KDD'18]

o Chapter 10: Self-supervised spectral graph

representations [TMKBM]
e Chapter 11: Scalable approximatio

NS for

oraph embeddings [TMB, WWW'20

ributions [TMMKBOM, ICLR20]

napter 12: ML applications: comparing data

10

Introduction to node representations

We use node embeddings to avoid slow, domal
for node classification, semi-supervised clusterl

)

)

embedding

/>

-specl

g anc

fic grap
anoma

1 d

V C

Log. regression Ijl

oorithms
etection.

11

Chapter 4: Versatile node embeddings

Core idea:

We can convert node similarity distributions that allow sampling into
representations in the Euclidean space with a single-layer neural network.

! !
| I E
B .

Similarity VERSE SVD

12

Chapter 4: Versatile node embeddings

Core idea:

We can convert node similarity distributions that allow sampling into
representations in the Euclidean space with a single-layer neural network.

Contributions:

e Time and space complexities of VERSE are O(n) and O(m) compared to O(nlog n) or O(n”)
time and O(n?) space complexity of the previous work.

e Interpretation of previous work in terms of personalised PageRank.

e State-of-the-art results in node classification and link prediction, independently verified in
(Mara et al., 2020)

12

Chapter 5: Anytime node embeddings

Core idea:

Neural embedding models implicitly performs matrix factorisation. Instead of
factorising, we sketch a matrix to achieve provable covariance error in linear time.

- FREDE F1 = = = FREDE %n

025_ T T F1T1T] T T 11171 T T 11717 T] 100
- ' - =
0.24 n N.etSMF i 30 g
2 - . WD 160 *
| B . J | W
g 0.23 - — i — <
E — - — 4(8
B -, -
0.22 |- i — 5
P VERSK DeepWalk |20
0.21 T hll‘ IR NN | |: 0
10° 10! 102

Time (seconds, log axis)
13

Chapter 5: Anytime node embeddings

Core idea:

Neural embedding models implicitly perfo
factorising, we sketch a matrix to achieve

Contributions:

‘ms matrix factori

DIOVa

Ole covarian

sation. Instead of

ce error

N linear ttime.

e \We analyse the optimal solution of VERSE, and interpret its solution as matrix factorisation.

e Instead of O(n?) factorisation, sketch the matrix row-by-row, with guara
Time complexity is ©(n) amortised per row. The solution can be retrievec

Ntees on the solution.
at any time.

o Competitive results in quality on some datasets with processing less that 1% of nodes!

13

Chapter 6: Local node embeddings

Core idea:

Hashing a similarity row is a local operation; a local similarity, such as
approximate personalised PageRank, yields a first local embedding algorithm.

Chapter 6: Local node embeddings

Core idea:

Hashing a similarity row is a local o
approximate personalised PageRan

Contributions:

neration; a local similarity, such as
K, ylelds a first local embedding algorithm.

e \We formulate the requirements for a local embedding algorithm to be useful in practice.

e \We prove that the time complexity of our algorithm is sublinear to the number of graph nodes.

e Experimenta

ly, our algorr

less than the -

astest basell

‘hm achieves similar or better performance at the time cost 2,000x
ne. Our algorithm is also tri

vially distributable and parallelizable.

14

Chapter 7: Deep modularity networks

Core idea:

N attri
from g

outed g

raph str

‘ap

UCT

- _/

)

s, NO explicit similarity can capture dif

re and node fea

‘ures. We u

se a spect

Is
3

rent signal strength
form of the modularity

ARA

eural network.

clustering as a differentiable objective function for grap

s [)M|ON| e SB M k-means(DGl) == k-means(features)

Feature signal strength

100
30
60
40
20

NMIx100

Graph signal strength
|

detectability
limit

15

Chapter 7: Deep modularity networks

Core idea:

n attributed grap
from graph struc

Lture

clustering as a di

Contributions:

NS, No explicit similarity can capture different signal strength

and node features. We use a spectral form of the modularity

Terentiable objective function for graph neural network.

e \We formulate a first end-to-end graph clustering method utilising graph neural networks and

develop a novel regularizer that empirically allows for better optimization.

e \We develop a novel way of benchmarking graph neural networks (published at GLB workshop).

e Empirically, we outperform competing neural network methods by up to 50% In terms of graph

metrics and grounc

truth label correlation.

15

Introduction to graph representations

In real world, we have graphs with >1 billion
edges. We also have millions of small graphs
that need to be represented.

lsomorphism or edit distance computations 272 SN, 1.1/ ' %//

’
/-

are Impractical on graphs with >100 nodes.
Kernels are not suited for large collections.

[

S

nus, we need scalable algorithms for
mbedding graphs in the Euclidean space.

(D

16

Chapter 9: Spectral graph similarity

Core idea:

d

Heat

kernel trace Is an easy-to-compute

stance. We can use -

Small £

‘he trace of a heat

ower bound to Grom

<ernel as an embedd]

Medium f

Ng of a gra

ov-\VVasser

Large

tein
on.

17

Chapter 9: Spectral graph similarity

Core idea:

distance. We can use -

Contributions:

e NetlLSD ise

Heat kernel trace is an easy-to-compute lower bound to Gromov-Wasserstein
he trace of a heat kernel as an embedding of a grapnh.

he first multi-scale graph comparison method that works on unaligned graphs.

The method is also optionally size-invariant.

e \We propose two approximation schemes that bring down the time complexity of the
computation from O(n>) to O(m) without impacting the downstream task quality.

e \We show
synthetic g

—

hat NetLSD significant

raphs In a variety of tas

v outperforms its less scalable counterparts on real and

<S.

17

Chapter 10: Learned graph similarity

Core idea:

Heat kernel trace

1S g se

Can we train a self-supe

- of fL

VIsecC

1

Als

ctions appliec

ot

Ural networ

K TO

ne spectrum o

" the graph.

earn these fur

Pre-trained on the global graph structure

ctions?

Pre-trained on the local graph structure

18

Chapter 10: Learned graph similarity

Core idea:

Heat kernel trace Is a set of functions applied to the spectrum of the graph.
Can we train a self-supervised neural network to learn these functions?

Contributions:
e [he first self-supervised method for learning graph representations. Next one is 2020!
e \We proposed to use two tasks for pre-training: one local and one global.

e [N an extensive set of experiments we demonstrate that no one-size-fits-all solution is possible.

Chapter 11: Approximating spectral similarities

Core idea:

Spectral functions in NetLSD can be approximated with the state-of-the-art
numerical linear algebra techniques.

—— NETLSD ---- VNGE — Added |E| ---- Removed |E]|

oL W | | | | — |
0 20 40 60 80 100 O 20 40 60 &80 100
19

Chapter 11: Approximating spectral similarities

Core idea:

Spectral functions in NetLSD can be approximated with the state-of-the-art
numerical linear algebra techniques.

Contributions:
e SLaQ) Is the first distance function to scale to billion-node graphs.
e \We derive the error bounds for NetLSD and show how to support other spectral functions.

o Experimentally, approximation error is 20-200x |ess than other methods, including ones
proposed in Chapter 9. The computations are faster than some naive baselines.

19

Chapter 12:
Comparing data distributions with graph-based similarities

Core idea:

aplacian of the k-NN graph approximates the Laplacian of the data manifold.
We can then leverage NetLSD and SLaQ to provide a scalable distance measure
for data distributions that can even lie in spaces of different dimensionality.

pl 150 T T T T T T T T T T T T T
ni N ®@IMD ®

(& —
hu g_‘ 10| FID O -
tr A KID O

ar 100 x o

he .

en tw

simple < PPN O

SV g)o 5 B N
de 50 - Simple English

es o= ® O

) 5 | L et

p

vi 1 A A ApA,L A A A 4 4

warggee . B m oy L= s n | | 7T | e
I A IFGP S TR O S pe e av as agd S b

c} é\, 20

—

Chapter 12:

Comparing data distributions with graph-based similarities

Core idea:

We can then leverage N\

etlLS

aplacian of the k-NN graph approximates the Laplacian of the data maniftold.
D and SLaQ to provide a scalable distance measure

for data distributions that can even lie in spaces of different dimensionality.

Contributions:

e IMD Is the first method to compare unaligned data manifolds.

e |t is also the first multi-scale metric for generative adversarial networks (GANS).

e \We demonstrate IMD'’s applica

transformations inc

uced by neu

o]

d

Ity on a
networ

oroad set of tasks, including introspection into

s, distances between languages through the lens of

thelr words, and generative adversarial network model evaluation.

20

Contribution summary

Representations of graphs

Representations of nod

€S

e First local, first anytime algorithms

e Scalability to orders of magnitu
larger graphs than reported befo
even by commercial systems

e A new paradigm for learning

de

f'e,

embeddings through graph clustering

» First multi-scale, first self-supervised
representation-based distances

e Scalable to unaligned graphs with
billion+ nodes on a single server in 15m

e Broad applications in machine
learning and graph mining

21

Deeper dive:
node embeddings

An In-depth review of proposed techniques

Versatile node embeddings

Core idea: abstract node similarities away from the representation framework.

Sample nodes from similarity distributions

sim(u, -)

sim(v, +)

Predi

ctions with negative sam

U

Shared representation

UT

nling

23

Versatile node embeddings

Core idea: abstract node similarities away from the representation framework.

Sample nodes from similarity distributions

W

Update U with gradient descent

Predi

ctions with negative sam

U

Shared representation

~ull similarity matrix M is never materialised

UT

nling

23

Anytime node embeddings

Core idea: we do not need to waste resources to compute V! and U can be
incrementally sketched with embeddings available at any time!

M U
W
— —>
@H H
_

24

Anytime node embeddings

Core idea: we do not need to waste resources to compute V! and U can be
incrementally sketched with embeddings available at any time!

M

24

Anytime node embeddings

Core idea: we do not need to waste resources to compute V! and U can be
incrementally sketched with embeddings available at any time!

M U
W
e —
O

Insert rows one by one into U

24

Anytime node embeddings

Core idea: we do not need to waste resources to compute V! and U can be
incrementally sketched with embeddings available at any time!

U

M
@
. . .
@ “u

Insert rows one by one into U

24

Anytime node embeddings

Core idea: we do not need to waste resources to compute V! and U can be
incrementally sketched with embeddings available at any time!

M U)3
: .
e —
U
~ N

When U is full, do SVD on it

Retrieve U at any time!

24

Local node embeddings

Core idea: we do not need to waste any resources, let's not compute rows of U
that we will not need! Hash the sparse similarity values into U directly.

25

Local node embeddings

Core idea: we do not need to waste any resources, let's not compute rows of U
that we will not need! Hash the sparse similarity values into U directly.

25

Local node embeddings

Core idea: we do not need to waste any resources, let's not compute rows of U
that we will not need! Hash the sparse similarity values into U directly.

M

25

Local node embeddings

Core idea: we do not need to waste any resources, let's not compute rows of U
that we will not need! Hash the sparse similarity values into U directly.

i,
L

25

Local node embeddings

Core idea: we do not need to waste any resources, let's not compute rows of U
that we will not need! Hash the sparse similarity values into U directly.

M U
Wl H BN
e —
O N [= B

Hash M as follows: U, ;) += A, (1) X max (O, log MW')

SIgn

25

Algorithm analysis

Time complexity:
e Reduction from O(nlogn) to O(n) time complexity for VERSE

e Reduction from O(n>) time and O(n?) space to G(n?) time and O(n) space for FREDE

e Local algorithm’s complexity independent of graph size

Guarantees & analysis:
e \VERSE shaves off 3 unnecessary parameters of the previous SotA
e FREDE offers fist-of-their-kind guarantees on the covariance of node embeddings

e | ocal algorithm provably converges to the global solution; proofs of sublinear time & memory

26

As good as we can get?

As good as we can get?

No.

As good as we can get?

No.

Our local method does not have quality guarantees, only asymptotic convergence.

Approximate similarity computations will lead to other, faster algorithms.

-mbeddings of large billion-scale graphs are still unexplored by any other method.

Good luck.

27

Acknowledgements

. John P@owitch
ndel Miller
Panagi as Benedek R@emberczki
13 co-authors, 6 with 3+ papers together Pavid %
AntoaIBitsulin
Marina Mbnkhoeva Bryan@erozzi
lvan O&gledets
Cilipe Miguel Goncalves de Almeida, Alex Bronstein, Vs
Panagiotis Karras, Silvio Lattanzi, Davide Mottin, Silvio @ttanz
Emmanuel Muller, Marina Munkhoeva, [van Oseledets,
John Palowitch, Bryan Perozzi, Stefan Postavaru, Filive delmeida

Stefan Postavaru

Benedek Rozemberczki, Yingtao Tian

28

Summary

Scalable, theoretically grounded algorithms
for building explicit, expressive representations
of graph-structured data

29

Summary

Simplified and explained Opened new
pDrevious work research directions

Scalable, theoretically grounded algorithms
for building explicit, expressive representations
of graph-structured data

N production
Reproduced
- by others

29

Spectral graph embeddings

Core idea: heat kernel trace is a very useful representation.

Ht — e—th — (I)e—tA(I)T — Z e—t}tj¢j¢j_l'
j=1
Tr(H,) = Z e~ easy to compute!
j=1
1/p

Spec : — B P - B
dGI;)V,p(X’ Y) — 1nf Sup e 2<t+t 1) . 2 Z Hif(xi, .xi/) — HtY(yl, yl‘/) ‘ mljml'/j/ Z SUP € 2<t+t 1) . |Tr (Hi() — Tr (HZ‘Y)

M
>0 ii i >0

30

Approximate spectral similarities

Core idea: we can approximate trace of matrix functions with stochastic estimation.

Hutchinson trace estimator

Gaussian quadrature

s-step Lanczos algorithm

Tr (f(M)) = E |27 f(M)z]
- [ZT f(M)z] ~ Z wyf (xk)
k=1

with weights w, and points x;

31

Extra: link prediction from embeddings

Operator Result

Average (a+b)/2

Concat la;,...,a;,by,...,b,]
Hadamard la, *b,,...,a,; xb,]
Weighted L1 [|]a, — by],...,|a; — by|]
Weighted L2 [(a, —b,)%,...,(a; — b,)"]

Table 2.3: Vector operators used for link-prediction task for each u,v €
V and corresponding embeddings a,b € R<.

32

Extra: link prediction from embeddings

Table 1: AUC scores and standard deviations over 3 experiment repetitions for setup LP1 where hyperparameters are tuned
and d = 128 for all methods except CNE where d = 8. Note that 0.000 in the table means < 0.0005. The best method within each
type of approach is highlighted in bold and the overall best for each column on grey background.

Methods StudentDB Facebook BlogCat. GR-QC AstroPH PPI Wikipedia Avg. AUC Avg. Rank

CN 0.630+£0.011 0.992+0.001 0.948+0.000 0.959+0.001 0.990+0.000 0.863+0.003 0.900:+0.002 | 0.860+0.210 17.21

JC 0.630+£0.011 0.990+0.001 0.770+0.002 0.959+0.001 0.990+0.000 0.839+0.001 0.623+0.005 | 0.756:0.260 22.07

AA 0.630+0.011 0.993+0.001 0.952+0.000 0.959+0.001 0.991+0.000 0.867+0.003 0.919+0.002 | 0.864+0.211 13.57

PA 0.922+0.008 0.842+0.003 0.955+0.001 0.839+0.006 0.879+0.001 0.905+0.002 0.920+0.001 | 0.894+0.041 16.50

RA 0.630+£0.011 0.994+0.001 0.958+0.000 0.959+0.001 0.991+0.000 0.867+0.003 0.931+0.002 | 0.867+0.212 10.64

NE_heuristics | 0.966+0.004 0.993+0.000 0.956+0.001 0.976+0.003 0.993+0.000 0.927+0.001 0.929+0.004 | 0.963+0.026 5.00

DeepWalk 0.906+0.005 0.990+0.000 0.943+0.000 0.986+0.001 0.984+0.000 0.905+0.001 0.903+0.002 | 0.945+0.040 13.14

DeepWalk_opne | 0.906+0.010 0.991+0.000 0.943+0.000 0.985+0.002 0.983+0.000 0.906+0.001 0.904+0.001 | 0.945+0.039 13.00

Node2vec 0.948+0.009 0.994+0.000 0.938+0.001 0.985+£0.003 0.989+0.001 0.840+0.006 0.893+0.002 | 0.941:+0.054 13.29

Node2vec_opne | 0.897+0.004 0.991+0.001 0.929+0.001 0.986+0.002 0.992+0.000 0.900+0.001 0.901+0.001 | 0.942+0.043 13.57

Struc2vec 0.933+£0.010 0.833+0.004 0.953+0.001 0.842:+0.005 0.874+0.001 0.904+0.002 0.918+0.001 | 0.894:+0.042 18.00

Metapath2vec | 0.981+0.005 0.942+0.003 0.948+0.000 0.804+0.006 0.858+0.002 0.880+0.003 0.903+0.001 | 0.902+0.058 19.29

WYS 0.819+0.016 0.940+0.003 0.915+0.002 0.833+0.008 0.855+0.004 0.853+0.005 0.864:+0.010 | 0.868+0.042 25.57

GF_opne 0.868+0.007 0.983+0.000 0.898+0.001 0.933+£0.005 0.947+0.001 0.837+0.004 0.834+0.003 | 0.900:0.054 23.57

GraRep_opne 0.969+0.003 0.993+0.000 0.962+0.001 0.984:+0.002 0.990+0.000 0.921+0.001 0.922+0.001 | 0.963+0.029 5.29

HOPE_gem 0.989+0.001 0.990+0.000 0.955+0.000 0.952+0.002 0.950+0.001 0.909+0.002 0.919+0.001 | 0.952+0.029 11.29

HOPE_opne 0.914+0.002 0.989+0.000 0.944+0.000 0.920+0.005 0.947+0.000 0.872+0.005 0.916+0.001 | 0.929:+0.034 18.57

LE_gem 0.906+0.010 0.992+0.000 0.800+0.003 0.975+0.003 0.934+0.004 0.760+0.005 0.767+0.005 | 0.876+0.097 20.36
LE_opne 0.906+0.011 0.992+0.000 0.803+0.005 0.977+0.001 0.932+0.002 0.764+0.003 0.771+0.006 | 0.878+0.092 20.00 L| N |< p red ICTION: VERSE IS
LLE_gem 0.890:+£0.008 0.990+0.000 0.704+0.002 0.970+0.004 0.895+0.006 0.726+0.008 0.741+0.005 | 0.845:+0.114 23.57

M-NMF 0.944+0.009 0.992+0.000 0.936+0.001 0.983+0.002 0.983+0.000 0.878+0.008 0.913+0.001 | 0.947+0.040 13.36 t h b t _ [1+ d
AROPE 0.982+0.002 0.991+0.001 0.955+0.001 0.968+0.001 0.967+0.000 0.910+0.001 0.918+0.002 | 0.956+0.029 10.79 C DEST-IankKir g Metno
SDNE_gem 0.987+0.004 0.979+0.002 0.952+0.000 0.945+0.002 0.971+0.001 0.910+0.002 0.918+0.001 | 0.952+0.028 13.29 . . L L
SDNE_opne 0.985+0.002 0.987+0.000 0.953+0.000 0.957+£0.007 0.969+0.002 0.898+0.005 0.917+0.001 | 0.952+0.032 13.86 1IN an In d e p enaent stu d \
PRUNE 0.901+£0.010 0.838+0.002 0.956+0.000 0.836+0.003 0.874+0.001 0.904+0.003 0.920:+0.001 | 0.890:+0.042 17.71

VERSE 0.935£0.010 0.994:0.001 0.956:0.002 0.990:0.002 0.996:0.000 0.919:0.002 0.919+0.002 | 0.959+0.033 457 @

LINE 0.963+0.004 0.993+0.001 0.931+0.000 0.984:+0.002 0.991+0.000 0.877+0.002 0.882:+0.002 | 0.946:+0.048 12.64

LINE_opne 0.850+0.010 0.991+0.000 0.932+0.000 0.933+£0.001 0.963+0.001 0.895+0.002 0.894:+0.003 | 0.923:+0.045 19.29 (I\/I ara et a/ 2 O 2 O)

CNE 0.946+0.009 0.994+0.000 0.967+0.001 0.980+0.000 0.976+0.000 0.928+0.001 0.922+0.001 | 0.959+0.026 6.00 *9

33

